domingo, 1 de noviembre de 2015

Comparación de cuerpos celestes

En este vídeo podréis ver la diferencia de tamaño entre algunos de los cuerpos celestes de este universo.
https://www.youtube.com/watch?v=Vc4RChLItX4



Nuestra historia en 2 min.

En este enlace puedes ver un vídeo sobre toda nuestra historia en dos minutos

https://www.youtube.com/watch?v=MrqqD_Tsy4Qhttps://www.youtube.com/watch?v=MrqqD_Tsy4Q

Viajes en el tiempo

El viaje a través del tiempo es un concepto de desplazamiento hacia delante o atrás en diferentes puntos del tiempo, similar a como se hace un desplazamiento en el espacio. Además, algunas interpretaciones de viaje en el tiempo sugieren la posibilidad de viajes entre realidades o universos paralelos.
Este artículo analiza la posibilidad teórica y técnica de viajes en el tiempo, y la posibilidad de que existan paradojas asociadas a dicho viaje a través del tiempo (por ejemplo evitar el nacimiento de nuestros propios antepasados o la paradoja de los gemelos).
De acuerdo con la descripción convencional de la teoría de la relatividad, las partículas materiales al moverse a través del espacio-tiempo se mueven hacia adelante en el tiempo (hacia el futuro) y hacia un lado u otro del espacio. El hecho de que la energía total y la masa sean positivas está relacionado con el hecho de que las partículas se muevan hacia el futuro (en mecánica cuántica un cambio de signo en el tiempo o una masa negativa son equiparables).
Un aspecto comprobado experimentalmente de la teoría de la relatividad es que viajar a velocidades cercanas a la velocidad de la luz ocasiona una dilatación del tiempo, por la cual el tiempo de un individuo que viaja a esa velocidad corre más lentamente. Desde la perspectiva del viajero, el tiempo "externo" parece fluir más rápidamente, causando la impresión de que el individuo hizo un viaje a través del tiempo. Sin embargo, este fenómeno en sí mismo, no es lo que suele denominarse como viaje a través del tiempo.
El concepto de viaje en el tiempo ha sido frecuentemente utilizado para examinar las consecuencias de teorías físicas como la relatividad especial, la relatividad general y la teoría cuántica de campos, aunque no existe evidencia experimental del viaje en el tiempo, sí existen razones teóricas importantes para considerar posible la existencia de cierto tipo de viaje a través del tiempo. En cualquier caso, las teorías actuales de la física no permiten ninguna posibilidad de viajar en el tiempo, en un espacio-tiempo del tipo del que ese cree es nuestro espacio-tiempo, que no parece tener líneas temporales cerradas.

Agujeros blancos

Agujero blanco es el término propuesto para definir una solución de las ecuaciones del campo gravitatorio de Einstein, cuya existencia se cree imposible, debido a las condiciones tan especiales que requiere.
Se trata de una región finita del espacio-tiempo, visible como objeto celeste con una densidad tal que deforma el espacio pero que, a diferencia del agujero negro, deja escapar materia y energía en lugar de absorberla. De hecho ningún objeto puede permanecer en el interior de dicha región durante un tiempo infinito. Por ello se define un agujero blanco como el reverso temporal de un agujero negro: el agujero negro absorbe a su interior a la materia en cambio el agujero blanco la expulsa.
Los más importantes avances en esta teoría son debidos a los trabajos independientes de los matemáticos Ígor Nóvikov y Yuval Ne'eman en la década de 1960, basados en la solución de Kruskal-Schwarzschild de las ecuaciones de la relatividad general.

El agujero negro de Schwarzschild es descrito como una singularidad en la cual una geodésica puede sólo ingresar, tal tipo de agujero negro incluye dos tipos de horizonte: un horizonte "futuro" (es decir, una región de la cual no se puede salir una vez que se ha ingresado en ella, y en la cual el tiempo -con el espacio- son curvados hacia el futuro), y un horizonte "pasado", el horizonte pasado tiene por definición la de una región donde es imposible la estancia y de la cual sólo se puede salir; el horizonte futuro entonces ya correspondería a un agujero blanco1
En el caso de un agujero negro de Reißner-Nordstrøm el agujero blanco pasa a ser -por ahora siempre hipotéticamente- la "salida" de un agujero negro en otro "universo", es decir, otra región asintóticamente plana similar a la región de la que procede un objeto emergente por ese otro tipo de agujero. La carga eléctrica del agujero del Reissner-Nordstrøm proporciona un mecanismo físico más razonable para construir posibles agujeros blancos.
A diferencia de los agujeros negros para los cuales existe un proceso físico bien estudiado, el colapso gravitatorio (que da lugar a agujeros negros cuando una estrella algo más masiva que el sol agota su "combustible" nuclear), no hay un proceso análogo claro que lleve con seguridad a producir agujeros blancos. Aunque se han apuntado algunas hipótesis:
  • En principio se ha supuesto a los agujeros blancos como una especie de "salida" de los agujeros negros, ambos tipos de singularidades probablemente estarían conectadas por un agujero de gusano (notar que, como los agujeros blancos, los agujeros de gusano aún no han sido encontrados hasta ahora); cuando se descubrieron los cuásares se supuso que estos eran los buscados agujeros blancos pero en la actualidad tal supuesto ha sido descartado.2
  • Otra idea generalizada en la actualidad es que los agujeros blancos serían muy inestables, durarían muy poco tiempo e incluso tras formarse podrían colapsar y transformarse en agujeros negros.
  • También se ha llegado a conjeturar que la singularidad inicial del big bang pudo haber sido una especie de agujero blanco en sus momentos iniciales.3

Agujeros de gusano


En física, un agujero de gusano, también conocido como puente de Einstein-Rosen y en algunas traducciones españolas como agujero de lombriz, es una hipotética característica topológica de un espacio-tiempo, descrita en las ecuaciones de la relatividad general, que esencialmente consiste en un atajo a través del espacio y el tiempo. Un agujero de gusano tiene por lo menos dos extremos conectados a una única garganta, a través de la cual podría desplazarse la materia. Hasta la fecha no se ha hallado ninguna evidencia de que el espacio-tiempo conocido contenga estructuras de este tipo, por lo que en la actualidad es solo una posibilidad teórica.
Cuando una estrella supergigante roja explota, arroja materia al exterior, de modo que acaba siendo de un tamaño inferior y se convierte en una estrella de neutrones. Pero también puede suceder que se comprima tanto que absorba su propia energía en su interior y desaparezca dejando un agujero negro en el lugar que ocupaba. Este agujero tendría una gravedad tan grande que ni siquiera la radiación electromagnética podría escapar de su interior. Estaría rodeado por una frontera esférica, llamada horizonte de sucesos. La luz traspasaría esta frontera para entrar, pero no podría salir, por lo que el agujero visto desde grandes distancias debería ser completamente negro (aunque Stephen Hawking postuló que ciertos efectos cuánticos generarían la llamada radiación de Hawking). Dentro del agujero, los astrofísicos conjeturan que se forma una especie de cono sin fondo. En 1994, el telescopio espacial Hubble detectó la presencia de uno muy denso en el centro de la galaxia elíptica M87, pues la alta aceleración de gases en esa región indica que debe de haber un objeto 3 500 millones de veces más masivo que el Sol. Finalmente, este agujero terminará por absorber a la galaxia entera.1

El primer científico en advertir de la existencia de agujeros de gusano fue el austríaco Ludwig Flamm, en 1916. En este sentido, la hipótesis del agujero de gusano es una actualización de la decimonónica teoría de una cuarta dimensión espacial que suponía —por ejemplo—, dado un cuerpo toroidal en el que se podían encontrar las tres dimensiones espaciales comúnmente perceptibles, una cuarta dimensión espacial que abreviara las distancias y, de esa manera, los tiempos de viaje. Esta noción inicial fue planteada de manera más científica en 1921 por el matemático alemán Hermann Weyl, cuando este relacionó sus análisis de la masa en términos de la energía de un campo electromagnético2 con la teoría de la relatividad de Albert Einstein publicada en 1916.
En la actualidad, la teoría de cuerdas admite la existencia de más de tres dimensiones espaciales (ver hiperespacio), pero esas dimensiones extra estarían compactadas a escalas subatómicas (según la teoría de Kaluza-Klein), por lo que parece muy difícil (si no imposible) aprovecharlas para emprender viajes en el espacio y el tiempo.
Las teorías sobre la métrica de los agujeros de gusano describen la geometría del espacio-tiempo de un agujero de gusano y sirven de modelos teóricos para el viaje en el tiempo. Un ejemplo simple de la métrica de un agujero de gusano atravesado podría ser el siguiente:
ds^2= - c^2 dt^2 + dl^2 + (k^2 + l^2)(d \theta^2 + \sin^2 \theta \, d\phi^2)
Un tipo de métrica de agujero de gusano no atravesado es la solución de Schwarzschild:
ds^2= - \left(1 - \frac{2GM}{c^2r}\right)dt^2 + \frac{dr^2}{1 - \cfrac{2GM}{c^2r}} + r^2(d \theta^2 + \sin^2 \theta \, d\phi^2)

Universos paralelos

Universos paralelos es el nombre de una hipótesis física, en la que entran en juego la existencia de varios universos o realidades relativamente independientes. El desarrollo de la física cuántica, y la búsqueda de una teoría unificada (teoría cuántica de la gravedad), conjuntamente con el desarrollo de la teoría de cuerdas, han hecho entrever la posibilidad de la existencia de múltiples universos paralelos conformando un multiverso.
Universos paralelos o términos similares también se encuentran como temáticas de la literatura, particularmente en lo que por ejemplo se refiere al género literario fantastique.

Una de las versiones científicas más curiosas que recurren a los universos paralelos es la interpretación de los universos múltiples o interpretación de los mundos múltiples (IMM), de Hugh Everett.2 Dicha teoría aparece dentro de la mecánica cuántica como una posible solución al problema de la medida en mecánica cuántica. Everett describió su interpretación más bien como una metateoría. Desde un punto de vista lógico la construcción de Everett evade muchos de los problemas asociados a otras interpretaciones más convencionales de la mecánica cuántica. Recientemente sin embargo, se ha propuesto que universos adyacentes al nuestro podrían dejar una huella observable en la radiación de fondo de microondas, lo cual abriría la posibilidad de probar experimentalmente esta teoría.3 El problema de la medida es uno de los principales «frentes filosóficos» que abre la mecánica cuántica. Si bien la mecánica cuántica ha sido la teoría física más precisa hasta el momento, permitiendo hacer cálculos teóricos relacionados con procesos naturales que dan 20 decimales correctos y ha proporcionado una gran cantidad de aplicaciones prácticas (centrales nucleares, relojes de altísima precisión, ordenadores), existen ciertos puntos difíciles en la interpretación de algunos de sus resultados y fundamentos (el premio Nobel Richard Feynman llegó a bromear diciendo «creo que nadie entiende verdaderamente la mecánica cuántica»).